注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

阿弥陀佛

街树飘影未见尘 潭月潜水了无声 般若观照心空静...

 
 
 

日志

 
 
关于我

一直从事气象预报、服务建模实践应用。 注重气象物理场、实况场、地理信息、本体知识库、分布式气象内容管理系统建立。 对Barnes客观分析, 小波,计算神经网络、信任传播、贝叶斯推理、专家系统、网络本体语言有一定体会。 一直使用Java、Delphi、Prolog、SQL编程。

网易考拉推荐

A first look at Breeze  

2015-08-24 05:49:56|  分类: breeze |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

A first look at Breeze

The next part of the session requires the Breeze library – see the Breeze quickstart guide for further details. We begin by taking a quick look at everyone’s favourite topic of non-uniform random number generation. Let’s start by generating a couple of draws from a Poisson distribution with mean 3.

scala> import breeze.stats.distributions._
import breeze.stats.distributions._
 
scala> val poi = Poisson(3.0)
poi: breeze.stats.distributions.Poisson = Poisson(3.0)
 
scala> poi.draw
res19: Int = 2
 
scala> poi.draw
res20: Int = 3

If more than a single draw is required, an iid sample can be obtained.

scala> val x = poi.sample(10)
x: IndexedSeq[Int] = Vector(2, 3, 3, 4, 2, 2, 1, 2, 4, 2)
 
scala> x
res21: IndexedSeq[Int] = Vector(2, 3, 3, 4, 2, 2, 1, 2, 4, 2)
 
scala> x.sum
res22: Int = 25
 
scala> x.length
res23: Int = 10
 
scala> x.sum.toDouble/x.length
res24: Double = 2.5

Note that this Vector is mutable. The probability mass function (PMF) of the Poisson distribution is also available.

scala> poi.probabilityOf(2)
res25: Double = 0.22404180765538775
 
scala> x map {x => poi.probabilityOf(x)}
res26: IndexedSeq[Double] = Vector(0.22404180765538775, 0.22404180765538775, 0.22404180765538775, 0.16803135574154085, 0.22404180765538775, 0.22404180765538775, 0.14936120510359185, 0.22404180765538775, 0.16803135574154085, 0.22404180765538775)
 
scala> x map {poi.probabilityOf(_)}
res27: IndexedSeq[Double] = Vector(0.22404180765538775, 0.22404180765538775, 0.22404180765538775, 0.16803135574154085, 0.22404180765538775, 0.22404180765538775, 0.14936120510359185, 0.22404180765538775, 0.16803135574154085, 0.22404180765538775)

Obviously, Gaussian variables (and Gamma, and several others) are supported in a similar way.

scala> val gau=Gaussian(0.0,1.0)
gau: breeze.stats.distributions.Gaussian = Gaussian(0.0, 1.0)
 
scala> gau.draw
res28: Double = 1.606121255846881
 
scala> gau.draw
res29: Double = -0.1747896055492152
 
scala> val y=gau.sample(20)
y: IndexedSeq[Double] = Vector(-1.3758577012869702, -1.2148314970824652, -0.022501190144116855, 0.3244006323566883, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> y
res30: IndexedSeq[Double] = Vector(-1.3758577012869702, -1.2148314970824652, -0.022501190144116855, 0.3244006323566883, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> y.sum/y.length
res31: Double = -0.34064156102380994
 
scala> y map {gau.logPdf(_)}
res32: IndexedSeq[Double] = Vector(-1.8654307403000054, -1.6568463163564844, -0.9191916849836235, -0.9715564183413823, -0.9836614354155007, -1.3847302992371653, -1.0023094506890617, -0.9256472309869705, -1.3059361584943119, -0.975419259871957, -1.1669755840586733, -1.6444202843394145, -0.93783943912556, -0.9683690047171869, -0.9209315167224245, -2.090114759123421, -1.6843650876361744, -1.0915455053203147, -1.359378517654625, -1.1399116208702693)
 
scala> Gamma(2.0,3.0).sample(5)
res33: IndexedSeq[Double] = Vector(2.38436441278546, 2.125017198373521, 2.333118708811143, 5.880076392566909, 2.0901427084667503)

This is all good stuff for those of us who like to do Markov chain Monte Carlo. There are not masses of statistical data analysis routines built into Breeze, but a few basic tools are provided, including some basic summary statistics.

scala> import breeze.stats.DescriptiveStats._
import breeze.stats.DescriptiveStats._
 
scala> mean(y)
res34: Double = -0.34064156102380994
 
scala> variance(y)
res35: Double = 0.574257149387757
 
scala> meanAndVariance(y)
res36: (Double, Double) = (-0.34064156102380994,0.574257149387757)

Support for linear algebra is an important part of any scientific library. Here the Breeze developers have made the wise decision to provide a nice Scala interface to netlib-java. This in turn calls out to any native optimised BLAS or LAPACK libraries installed on the system, but will fall back to Java code if no optimised libraries are available. This means that linear algebra code using Scala and Breeze should run as fast as code written in any other language, including C, C++ and Fortran, provided that optimised libraries are installed on the system. For further details see the Breeze linear algebra guide. Let’s start by creating and messing with a dense vector.

scala> import breeze.linalg._
import breeze.linalg._
 
scala> val v=DenseVector(y.toArray)
v: breeze.linalg.DenseVector[Double] = DenseVector(-1.3758577012869702, -1.2148314970824652, -0.022501190144116855, 0.3244006323566883, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> v(1) = 0
 
scala> v
res38: breeze.linalg.DenseVector[Double] = DenseVector(-1.3758577012869702, 0.0, -0.022501190144116855, 0.3244006323566883, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> v(1 to 3) := 1.0
res39: breeze.linalg.DenseVector[Double] = DenseVector(1.0, 1.0, 1.0)
 
scala> v
res40: breeze.linalg.DenseVector[Double] = DenseVector(-1.3758577012869702, 1.0, 1.0, 1.0, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> v(1 to 3) := DenseVector(1.0,1.5,2.0)
res41: breeze.linalg.DenseVector[Double] = DenseVector(1.0, 1.5, 2.0)
 
scala> v
res42: breeze.linalg.DenseVector[Double] = DenseVector(-1.3758577012869702, 1.0, 1.5, 2.0, 0.35978577573558407, 0.9651857500320781, -0.40834034207848985, 0.11583348205331555, -0.8797699986810634, -0.33609738668214695, 0.7043252811790879, -1.2045594639823656, 0.19442688045065826, -0.31442160076087067, 0.06313451540562891, -1.5304745838587115, -1.2372764884467027, 0.5875490994217284, -0.9385520597707431, -0.6647903243363228)
 
scala> v :> 0.0
res43: breeze.linalg.BitVector = BitVector(1, 2, 3, 4, 5, 7, 10, 12, 14, 17)
 
scala> (v :> 0.0).toArray
res44: Array[Boolean] = Array(false, true, true, true, true, true, false, true, false, false, true, false, true, false, true, false, false, true, false, false)

Next let’s create and mess around with some dense matrices.

scala> val m = new DenseMatrix(5,4,linspace(1.0,20.0,20).toArray)
m: breeze.linalg.DenseMatrix[Double] =
1.0  6.0   11.0  16.0 
2.0  7.0   12.0  17.0 
3.0  8.0   13.0  18.0 
4.0  9.0   14.0  19.0 
5.0  10.0  15.0  20.0 
 
scala> m
res45: breeze.linalg.DenseMatrix[Double] =
1.0  6.0   11.0  16.0 
2.0  7.0   12.0  17.0 
3.0  8.0   13.0  18.0 
4.0  9.0   14.0  19.0 
5.0  10.0  15.0  20.0 
 
scala> m.rows
res46: Int = 5
 
scala> m.cols
res47: Int = 4
 
scala> m(::,1)
res48: breeze.linalg.DenseVector[Double] = DenseVector(6.0, 7.0, 8.0, 9.0, 10.0)
 
scala> m(1,::)
res49: breeze.linalg.DenseMatrix[Double] = 2.0  7.0  12.0  17.0 
 
scala> m(1,::) := linspace(1.0,2.0,4)
res50: breeze.linalg.DenseMatrix[Double] = 1.0  1.3333333333333333  1.6666666666666665  2.0 
 
scala> m
res51: breeze.linalg.DenseMatrix[Double] =
1.0  6.0                 11.0                16.0 
1.0  1.3333333333333333  1.6666666666666665  2.0  
3.0  8.0                 13.0                18.0 
4.0  9.0                 14.0                19.0 
5.0  10.0                15.0                20.0 
 
scala>
 
scala> val n = m.t
n: breeze.linalg.DenseMatrix[Double] =
1.0   1.0                 3.0   4.0   5.0  
6.0   1.3333333333333333  8.0   9.0   10.0 
11.0  1.6666666666666665  13.0  14.0  15.0 
16.0  2.0                 18.0  19.0  20.0 
 
scala> n
res52: breeze.linalg.DenseMatrix[Double] =
1.0   1.0                 3.0   4.0   5.0  
6.0   1.3333333333333333  8.0   9.0   10.0 
11.0  1.6666666666666665  13.0  14.0  15.0 
16.0  2.0                 18.0  19.0  20.0 
 
scala> val o = m*n
o: breeze.linalg.DenseMatrix[Double] =
414.0              59.33333333333333  482.0              516.0              550.0             
59.33333333333333  9.555555555555555  71.33333333333333  77.33333333333333  83.33333333333333 
482.0              71.33333333333333  566.0              608.0              650.0             
516.0              77.33333333333333  608.0              654.0              700.0             
550.0              83.33333333333333  650.0              700.0              750.0             
 
scala> o
res53: breeze.linalg.DenseMatrix[Double] =
414.0              59.33333333333333  482.0              516.0              550.0             
59.33333333333333  9.555555555555555  71.33333333333333  77.33333333333333  83.33333333333333 
482.0              71.33333333333333  566.0              608.0              650.0             
516.0              77.33333333333333  608.0              654.0              700.0             
550.0              83.33333333333333  650.0              700.0              750.0             
 
scala> val p = n*m
p: breeze.linalg.DenseMatrix[Double] =
52.0                117.33333333333333  182.66666666666666  248.0             
117.33333333333333  282.77777777777777  448.22222222222223  613.6666666666667 
182.66666666666666  448.22222222222223  713.7777777777778   979.3333333333334 
248.0               613.6666666666667   979.3333333333334   1345.0            
 
scala> p
res54: breeze.linalg.DenseMatrix[Double] =
52.0                117.33333333333333  182.66666666666666  248.0             
117.33333333333333  282.77777777777777  448.22222222222223  613.6666666666667 
182.66666666666666  448.22222222222223  713.7777777777778   979.3333333333334 
248.0               613.6666666666667   979.3333333333334   1345.0            

So, messing around with vectors and matrices is more-or-less as convenient as in well-known dynamic and math languages. To conclude this section, let us see how to simulate some data from a regression model and then solve the least squares problem to obtain the estimated regression coefficients. We will simulate 1,000 observations from a model with 5 covariates.

scala> val X = new DenseMatrix(1000,5,gau.sample(5000).toArray)
X: breeze.linalg.DenseMatrix[Double] =
-0.40186606934180685  0.9847148198711287    ... (5 total)
-0.4760404521336951   -0.833737041320742    ...
-0.3315199616926892   -0.19460446824586297  ...
-0.14764615494496836  -0.17947658245206904  ...
-0.8357372755800905   -2.456222113596015    ...
-0.44458309216683184  1.848007773944826     ...
0.060314034896221065  0.5254462055311016    ...
0.8637867740789016    -0.9712570453363925   ...
0.11620167261655819   -1.2231380938032232   ...
-0.3335514290842617   -0.7487303696662753   ...
-0.5598937433421866   0.11083382409013512   ...
-1.7213395389510568   1.1717491221846357    ...
-1.078873342208984    0.9386859686451607    ...
-0.7793854546738327   -0.9829373863442161   ...
-1.054275201631216    0.10100826507456745   ...
-0.6947188686537832   1.215...
scala> val b0 = linspace(1.0,2.0,5)
b0: breeze.linalg.DenseVector[Double] = DenseVector(1.0, 1.25, 1.5, 1.75, 2.0)
 
scala> val y0 = X * b0
y0: breeze.linalg.DenseVector[Double] = DenseVector(0.08200546839589107, -0.5992571365601228, -5.646398002309553, -7.346136663325798, -8.486423788193362, 1.451119214541837, -0.25792385841948406, 2.324936340609002, -1.2285599639827862, -4.030261316643863, -4.1732627416377674, -0.5077151099958077, -0.2087263741903591, 0.46678616461409383, 2.0244342278575975, 1.775756468177401, -4.799821190728213, -1.8518388060564481, 1.5892306875621767, -1.6528539564387008, 1.4064864330994125, -0.8734630221484178, -7.75470002781836, -0.2893619536998493, -5.972958583649336, -4.952666733286302, 0.5431255990489059, -2.477076684976403, -0.6473617571867107, -0.509338416957489, -1.5415350935719594, -0.47068802465681125, 2.546118380362026, -7.940401988804477, -1.037049442788122, -1.564016663370888, -3.3147087994...
scala> val y = y0 + DenseVector(gau.sample(1000).toArray)
y: breeze.linalg.DenseVector[Double] = DenseVector(-0.572127338358624, -0.16481167194161406, -4.213873268823003, -10.142015065601388, -7.893898543052863, 1.7881055848475076, -0.26987820512025357, 3.3289433195054148, -2.514141419925489, -4.643625974157769, -3.8061000214061886, 0.6462624993109218, 0.23603338389134149, 1.0211137806779267, 2.0061727641393317, 0.022624943149799348, -5.429601401989341, -1.836181225242386, 1.0265599173053048, -0.1673732536615371, 0.8418249443853956, -1.1547110533101967, -8.392100167478764, -1.1586377992526877, -6.400362975646245, -5.487018086963841, 0.3038055584347069, -1.2247410435868684, -0.06476921390724344, -1.5039074374120407, -1.0189111630970076, 1.307339668865724, 2.048320821568789, -8.769328824477714, -0.9104251029228555, -1.3533910178496698, -2.178788...
scala> val b = X \ y  // defaults to a QR-solve of the least squares problem
b: breeze.linalg.DenseVector[Double] = DenseVector(0.9952708232116663, 1.2344546192238952, 1.5543512339052412, 1.744091673457169, 1.9874158953720507)

So all of the most important building blocks for statistical computing are included in the Breeze library.

At this point it is really worth reminding yourself that Scala is actually a statically typed language, despite the fact that in this session we have not explicitly declared the type of anything at all! This is because Scala has type inference, which makes type declarations optional when it is straightforward for the compiler to figure out what the types must be. For example, for our very first expression, val a = 5, because the RHS is an Int, it is clear that the LHS must also be an Int, and so the compiler infers that the type of a must be an Int, and treats the code as if the type had been declared as val a: Int = 5. This type inference makes Scala feel very much like a dynamic language in general use. Typically, we carefully specify the types of function arguments (and often the return type of the function, too), but then for the main body of each function, just let the compiler figure out all of the types and write code as if the language were dynamic. To me, this seems like the best of all worlds. The convenience of dynamic languages with the safety of static typing.

Declaring the types of function arguments is not usually a big deal, as the following simple example demonstrates.

scala> def mean(arr: Array[Int]): Double = {
     |   arr.sum.toDouble/arr.length
     | }
mean: (arr: Array[Int])Double
 
scala> mean(Array(3,1,4,5))
res55: Double = 3.25

A complete Scala program

For completeness, I will finish this post with a very simple but complete Scala/Breeze program. In a previous post I discussed a simple Gibbs sampler in Scala, but in that post I used the Java COLT library for random number generation. Below is a version using Breeze instead.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
object BreezeGibbs {
 
  import breeze.stats.distributions._
  import scala.math.sqrt
 
  class State(val x: Double, val y: Double)
 
  def nextIter(s: State): State = {
    val newX = Gamma(3.0, 1.0 / ((s.y) * (s.y) + 4.0)).draw()
    new State(newX, Gaussian(1.0 / (newX + 1), 1.0 / sqrt(2 * newX + 2)).draw())
  }
 
  def nextThinnedIter(s: State, left: Int): State = {
    if (left == 0) s
    else nextThinnedIter(nextIter(s), left - 1)
  }
 
  def genIters(s: State, current: Int, stop: Int, thin: Int): State = {
    if (!(current > stop)) {
      println(current + " " + s.x + " " + s.y)
      genIters(nextThinnedIter(s, thin), current + 1, stop, thin)
    } else s
  }
 
  def main(args: Array[String]) {
    println("Iter x y")
    genIters(new State(0.0, 0.0), 1, 50000, 1000)
  }
 
}

Summary

In this post I’ve tried to give a quick taste of the Scala language and the Breeze library for those used to dynamic languages for statistical computing. Hopefully I’ve illustrated that the basics don’t look too different, so there is no reason to fear Scala. It is perfectly possible to start using Scala as a better and faster Python or R. Once you’ve mastered the basics, you can then start exploring the full power of the language. There’s loads of introductory Scala material to be found on-line. It probably makes sense to start with the links I’ve highlighted above. After that, just start searching – there’s an interesting set of tutorials I noticed just the other day. A very time-efficient way to learn Scala quickly is to do the FP with Scala course on Coursera, but whether this makes sense will depend on when it is next running. For those who prefer real books, the book Programming in Scala is the standard reference, and I’ve also found Functional programming in Scala to be useful (free text of the first edition of the former and a draft of the latter can be found on-line).

REPL Script

Below is a copy of the complete REPL script, for reference.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// start with non-Breeze stuff
 
val a = 5
a
a = 6
a
 
var b = 7
b
b = 8
b
 
val c = List(3,4,5,6)
c(1)
c.sum
c.length
c.product
c.foldLeft(0)((x,y) => x+y)
c.foldLeft(0)(_+_)
c.foldLeft(1)(_*_)
 
val d = Vector(2,3,4,5,6,7,8,9)
d
d.slice(3,6)
val e = d.updated(3,0)
d
e
 
val f=(1 to 10).toList
f
f.map(x => x*x)
f map {x => x*x}
f filter {_ > 4}
 
// introduce breeze through random distributions
 
import breeze.stats.distributions._
val poi = Poisson(3.0)
poi.draw
poi.draw
val x = poi.sample(10)
x
x.sum
x.length
x.sum.toDouble/x.length
poi.probabilityOf(2)
x map {x => poi.probabilityOf(x)}
x map {poi.probabilityOf(_)}
 
val gau=Gaussian(0.0,1.0)
gau.draw
gau.draw
val y=gau.sample(20)
y
y.sum/y.length
y map {gau.logPdf(_)}
 
Gamma(2.0,3.0).sample(5)
 
import breeze.stats.DescriptiveStats._
mean(y)
variance(y)
meanAndVariance(y)
 
 
// move on to linear algebra
 
import breeze.linalg._
val v=DenseVector(y.toArray)
v(1) = 0
v
v(1 to 3) := 1.0
v
v(1 to 3) := DenseVector(1.0,1.5,2.0)
v
v :> 0.0
(v :> 0.0).toArray
 
val m = new DenseMatrix(5,4,linspace(1.0,20.0,20).toArray)
m
m.rows
m.cols
m(::,1)
m(1,::)
m(1,::) := linspace(1.0,2.0,4)
m
 
val n = m.t
n
val o = m*n
o
val p = n*m
p
 
// regression and QR solution
 
val X = new DenseMatrix(1000,5,gau.sample(5000).toArray)
val b0 = linspace(1.0,2.0,5)
val y0 = X * b0
val y = y0 + DenseVector(gau.sample(1000).toArray)
val b = X \ y  // defaults to a QR-solve of the least squares problem
 
// a simple function example
 
def mean(arr: Array[Int]): Double = {
  arr.sum.toDouble/arr.length
}
 
mean(Array(3,1,4,5))
About these ads
  评论这张
 
阅读(236)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017